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1 Introduction

An important area of study in Natural Language Processing is Probabilistic Parts of Speech (POS) tag-
ging. Two interrelated classes of methods used to POS tag texts are Hidden Markov Models and Maximum
Entropy Models, both of which predict future states based on probabilities generated from previous states.
In class, we learned about one specific Hidden Markov Model, specifically the Bigram Viterbi Algorithm,
which computes a given word’s POS by using emission and transition probabilities from the current and
previous word, based on data from a training corpus. We then learned about the Maximum Entropy
Markov Model (MEMM) [4] which uses a Maximum Entropy Distribution (least biased) to classify words,
based on a set of features.

After applying these algorithms on the English language, I was curious about the robustness of such al-
gorithms, and more specifically, the consistency of the results produced by the algorithms across different
types of data sets. I wanted to see to what extent the accuracies of these algorithms were dependent on
the size of the data as well as the nature of the language that the data was written in.

Two attributes that describe the mechanisms of a language are Morphology and Syntax. After trying
the algorithm on English, a syntax heavy language, I wanted to conduct experiments on a more morpho-
logically rich language. I settled on Hindi, my native language, which is morphologically far richer than
English. It is important to note that when I refer to a language being morphologically rich, I ultimately
mean that much of the sentence structure can be interpreted through the individual words themselves,
since they have been modified to express different grammar. Such languages are also known as Inflectional
languages.

In the first set of experiments, I use the Viterbi Algorithm to tag Hindi’s Categorical and Type tags,
to understand the similarities English and Hindi have in syntax. Then, to tag Hindi’s Morphological
Attributes, I take a unique approach using MEMMs.

2 Data

There are some significant differences between English and Hindi, which affect the methodologies for POS
tagging. Hindi is a morphologically rich language, meaning that much of the grammar is encoded in indi-
vidual words and is less present in phrase structure. As a result, POS tags are far more descriptive. This
is the opposite case for English, in which most words can be assigned to 1 out of 36 Parts of Speech [As
listed in the Penn Treebank].
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This task was only possible because of the availability of a Hindi corpora, on which I could train, develop,
and test my algorithm on. Through a bit of research, Professor Meyers and I were able to find an an-
notated POS set created by Microsoft Research India. The data contained 18 annotated files, each with
approximately 290-300 sentences.

The data provided by Microsoft Research India (MRI) is annotated using the IL-Post Framework. This
framework represents Hindi’s morphologically rich nature by dividing parts of speech into three layers:
Category, Type, and Attribute. MRI describes the Category layer as the “primary grammatical class”
to which words belong to (examples are Noun, Verb, Adjective). Types are more exact specifications of
these Categories (Common Noun, Proper Noun, Verbal Noun, etc). Attributes represent the “morpho-
syntactic” features of Hindi and it’s denominations, and differ across Category-Type combinations. For
example, Common Nouns (NC) can have Gender, Number, Case, and an optional Case-Marker, while a
Verbal Noun only has Case and an optional Case-Marker. The data set grouped the Category and Type
layers into one layer, which allowed me to tag Category and Type together.

3 Preparing Data

Creating training, development, and testing corpus’ proved to be a pedantic task, especially since the data
was laced with tiny errors, which made parsing difficult. Given that the MRI data set had 16 text files, I
allocated 12 text files for training, 1 file for development, and 3 for test. I trained my algorithms on the
training file, and tested the algorithms multiple times on my development file, until finally testing on the
three test files.

4 Tagging Category and Type

While doing research, I saw that similar experiments done on other languages with fine-grained POS tags
used some sort of decision tree [2]. Because decision trees and similar structures use Dynamic Bayesian
Networks [9], I inferred that any algorithm that used similar mechanisms would generate apt results. I
had previously implemented the Viterbi Algorithm, a Hidden Markov Model (HMM) which by definition
also used a Dynamic Bayesian Networks. Because the Category and Type in the Hindi data set were in
the same format as the data set I used for tagging English words, I decided to use the same algorithm.

Implementing the algorithm can generally be broken down into these very simple steps:

• Generating Transition and Emission Probabilities by iterating through Training File.

• Scanning individual sentences, computing emission probability and transition probability products,
finding max probabilities.

• Handing OOV cases.

See Results in ’Evaluation and Results’

5 Tagging Attributes

Attributes are heavily dependent on the Category, Type, and other morphological features. Because the
annotated data set had Category, Type, and Attribute in one string (separated by a period), I first wanted
to see how the Viterbi Algorithm would fare in tagging the entire POS tags from the test corpus. However,
as I expected, it produced poor results (7% accuracy). This was due to two specific reasons:
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1. The number of POS possibilities with the IL-Post framework are huge(typically 1 category/type, and
4-5 attributes per POS = 27 possible Category/Type possibilities * 4 tags (at average) * 3 choices per
attribute (at average) = 324 distinct possibilities ), so transition and emission probabilities generated
were not significant enough to be able to predict patterns in POS.

2. Attributes are given based on morphology, so determining a word’s attributes based on patterns
of attributes from the training file (in cases where that specific combination wasn’t present in the
training file) would not produce accurate results.

I looked at similar studies to see how fine-grained tags (like above) have been accurately tagged. In [1],
words were stemmed and were then passed to a Morphological Analyzer (MA) which contained suffix
replacement rules (SRRs), lexicon rules, group identification rules and morpheme analysis rules like below.

Figure 1: Taken from [1]

Though it is plausible, it is extremely difficult to create an attribute tagging rule set which handles every
morphological rule for Hindi because morphology is dependent on many aspects, such as who is saying the
sentence, the meaning of the sentence, and word order. Again, it can still be done but only if the writer of
the rule set has a very high linguistic understanding of the language. This is, for a large part, why most
authors of studies on POS tagging for Hindi were native Indians or Hindi Linguists.

6 Maximum Entropy Markov Model For Attribute Tagging

After realizing that implementing a Morphological Analyzer was not plausible with my current linguis-
tic understanding level of Hindi, I wanted to analyze different methods of tagging morphological attributes.

In previous studies, Maximum Entropy Markov Models, along with a Morphological Analyzer [5], were used
in tagging both morphologically-based tags and syntactically-based tags in morphologically rich languages.
What makes MEMM’s stand out are their accuracy in identifying OOV words. Instead of relying on the
word alone, the model chains user-added features, which often are far better predictors of an unknown
word than the transition probabilities of the previous word.

Because Morphological Attributes also rely on features of a word, like the letters (characters) of the word
and the Categorial/Type POS of the current, previous, and next words, I wanted to see how MEMM’s
would fare when predicting individual morphological attributes.

From previous studies read, I could not find any experiments which solely used a MEMM to identify
morphological attributes for Hindi. Most used morphological analyzers and dictionaries [5][6], while others
used morphological features like suffixes, digits, and special characters [7] to tag Categorial and Type tags.
I wanted to try the opposite (using Categorial and Type tags along with other features to detect morph
attributes), which made experimentation interesting. Though Hindi is a morphologically rich language,
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doing such experiments can truly reveal if some attributes are more syntactically rich than others, and
even more specifically, on what specific features these features are dependent.

7 Experiments on Identifying Morphological Attributes

I focused my experimentation on tagging a couple of specific morphological attributes that were more
present in different categorial POS tags than others.

The morphological attributes to be tagged by the MEMM were:

• Gender: Male, Female, 0 (Not Identifiable), None (Not Applicable)

• Number: Singular, Plural, 0 (Not Identifiable), None (Not Applicable)

• Case: Direct, Oblique, None (Not Applicable)

The features that the MEMM used in tagging were:

• Words: Previous Word, Previous Previous Word,

• Category and Type: Previous Category and Type, Previous Previous Category and Type, Next
Category and Type, Next Category and Type

8 Evaluation and Results

I tested the Viterbi Algorithm on the three test files and produced the results below. I have also included
my algorithms results on an English file with roughly the same number of words in the training file (59K
words).

Category and Type Tagging
File Accuracy

Test File 1 75.00 %
Test File 2 77.12%
Test File 3 79.78 %
English File 81.65%

My experiments in tagging Gender, Number, and Case using an MEMM produced the results below.

Attribute Tagging
File Number Gender Number Case

File 3 85.46% 89.04% 93.97%
File 4 87.58% 89.48% 94.30%
File 5 88.79% 88.75% 91.49%

Because I could not find any other experiment which separately tagged Category/Type tags and Attribute
tags, it is difficult to separately compare the two sets of experiments above to other models. However, all
models that I read about used somewhat similar methods to mine and produced state of the art results.
Their accuracies are shown below.
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Results From Similar Studies
Algorithm Author Training File

Size (words)
Accuracy

MEMM with
word features

Dalal [7] 15.5K 94.81%

CN2 Singh [1] 15.5K 93.45%
Rule Based Garg [8] 26.1K 87.55%
Supervised
HMM with MA

Dandapat [5] 40K 86.64%

MEMM Dandapat [5] 40K 84.65%
Supervised
HMM

Dandapat [5] 40K 77.29%

Though my results seem very high for tagging morphological tags without a Morphological Analyzer, it is
important to note that most published experiments which used a Morphological Analyzer were identifying
the entire POS, which is formed of chains of multiple different morphological attributes and category/type.
My simple model tagged a single chosen attribute (gender, case, number) in an experiment and used the
correct category and type (which was taken from the key) as a feature input. As a result, there there was
far less variables my model had to solve for.

9 Error Analysis

In these experiments, any error was largely based on a lack of data, the probabilistic nature of the algo-
rithm, or the language. For both Hindi and English experiments, the training file only had around 59,000
tokens, which is generally considered too low for statistical-based models like HMM’s to produce extremely
high results. This resulted in a higher occurrence of out of vocabulary (OOV) words (The algorithm de-
tected 14% of words to be OOV in Test 3). The Viterbi Algorithm I implemented handled these OOV
cases by choosing the POS that the directly preceding POS pointed to most of the time. This method
is simply a ”best-case guess” and frequently chooses the wrong POS, which is why implementing a more
functional OOV strategy is also a future area of work. MEMM’s handle OOV cases far better by assuming
”unknown values to be learnt are connected in a Markov chain rather than being conditionally indepen-
dent of each other” [10], which is a reason why accuracies for OOV cases were higher when using this model.

Similarly, with a lack of training data, it is difficult to generate probabilities for most, if not all, possible
POS to POS combinations. By this I mean that a given POS can point to many other POS’, so for the
Viterbi algorithm to choose the right one for a given scenario, it should know most possible POS to POS
combinations that exist in a language. However, with little data, the Viterbi algorithm only knows a subset
of those possible POS’ and makes a misinformed decision.

For the MEMM, better results could have potentially been achieved with a more extensive list of features.
In my experiments, I only used at most 6 features, most of which were nearby word features (previous
and next words). Some additional features I intend on using in future experimentation, which have also
worked well in the past, are word stem and word letter.

Also, with all languages, there are edge cases that are very hard to account for. This is especially true for
Hindi because of language inflection.
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Lastly, because there were many errors in the files, it is possible that all errors were not caught, which
produced flawed results. For example, when testing my algorithm on the development corpus, I noticed
that there was a POS denoted ”VAUXmas” in my training corpus. Upon further inspection, I realized
that the POS tag in the files was missing a ”.” between the CT and Attribute, so when it came to parsing
for just category, the ”VAUX” category and ”mas” attribute (denoting ”masculine”) had been joined.
Although I was able to remove or rectify most small errors, there still may be some in the files.

10 Future Work

Though the most immediate area for future work is creating a detailed Morphological Analyzer which can
tag Attribute labels, there are other areas of future work that can better the results found in this study,
and lead to new discoveries in others.

In the set of experiments done, I hampered with the issue of not having a considerable amount of data to
train my model with (60,000 tokens). Other studies I have read which focused on statistical POS tagging
for Hindi echoed the same issue (“English has annotated corpora in abundance, enabling usage of powerful
data driven machine learning methods. But very few languages in the world have [the] resource advantage
that English enjoys” [1]). Because the amount and variability of the data drives the accuracy of POS
tagging, more annotated data can improve the way the models perform.

Furthermore, while these probabilistic models do generate good results, neural architectures (using neural
networks and deep learning) in NLP have been gaining popularity, and have generated “State of the Art”
results [3], even with noisy data. Labeau, Loser, and Allauzen in ”Non-lexical neural architecture for
fine-grained POS Tagging” were able to generate morphologically rich POS tag from character streams
using two layer Convolutional Neural Networks. However, models like these also require more data (this
particular experiment used the TIGER corpus that contains 900,000 tokens), which reaffirms the first
problem.

11 Conclusion

Though Hindi is a morphologically rich language, part of its POS can be determined using probabilistic
method, which is traditionally used for POS tagging more syntax-heavy languages. I was able to use the
same Viterbi algorithm on two languages, which have completely different structures (not only morphologi-
cal, but the basic grammar is different: Subject-Object-Verb vs. Subject-Verb-Object ) and the results were
very similar (only 2% difference). Furthermore, the MEMM used was very simple and didn’t take many
features, but was still able to attain 85%+ accuracy. However, the main question still needs to be explored:
to what degree of accuracy can a hard-coded rule set/morphological analyzer tag morphological attributes?

This is an area I plan on exploring in the near future, and in doing so, I hope to gain an understanding
of not only how morphologically rich languages really function, but also, how computers can be trained to
perceive POS’ the way humans do.
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